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Measuring spatial features of sound sources and receivers is typically a time consuming
task, especially when a high spatial resolution is required, as independent measurements have
to be conducted for each measured direction. A speed-up in measurement time can be achieved
with parallel measurement techniques using arrays of sound sensors or sources. For linear and
time-invariant systems only loose restrictions are claimed for the excitation signal and the
measurement method. Nevertheless, when measuring a sound receiver, e.g. directional micro-
phones, the signals emitted by the multiple sound sources must be separable. Acoustic systems
can be treated as linear systems for low input levels. However, when it comes to moderate lev-
els, loudspeakers show non-linear behavior that cannot be neglected. To conduct a parallelized
measurement technique at these levels the multiple exponential sweep method has recently
been introduced to measure the acoustic transfer characteristics with weakly non-linear sound
sources by using exponential sweeps. This method decreases the measurement time compared
to sequential measurements. However, compared to the ideal linear case, the measurement
duration is increased due to occurring harmonic impulse responses. A novel generalized over-
lapping strategy for these sweeps is proposed considering the length of each harmonic impulse
responses and additionally the temporal structure of the desired impulse responses measured
in anechoic environments. It is shown that the resulting optimized multiple exponential sweep
method can yield even shorter measurement times than the original method.

0 INTRODUCTION

The measurement of transfer characteristics of acousti-
cal systems is a common task and realized by using per-
sonal computers and digital signal processing. Systems are
often assumed to be linear and time invariant (LTI) to apply
the calculus introduced e.g. in system theory [1]. For this
class of systems the correlation of the input and output sig-
nal is used to obtain the impulse response or—its Fourier
transform—the transfer function. In the past decades, sev-
eral different excitation signals have been studied regarding
their performance in terms of signal to noise ratio (SNR),
crest factor and measurement duration. They have been ap-
plied successfully always considering their different advan-
tages and disadvantages. Maximum length sequences be-
came popular due to a time and memory efficient algorithm
leading directly to the impulse response of the system by
using the fast Hadamard transform [2]. As the calculation
time of impulse responses became less critical due to the
improvement of the calculation complexity and speed of
state-of-the-art personal computers sweep measurements
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gained popularity. Sweeps offer great advantages for sys-
tems that do not fully comply with the LTI assumption, e.g.
weak time variances (slow changes of the system response
over time) or non-linear transfer characteristics (harmonic
distortion) [3]. In the last decade, a measurement method to
identify harmonic distortion in loudspeakers based on ex-
ponential sweeps has been developed by MÜLLER ET. AL
and FARINA [3, 4, 5]. Their research is mainly focussed on
loudspeakers, known to be the most problematic element in
the plackback and measurement chain, as they feature non-
linear behavior if driven with high levels due to their con-
struction. The approach introduced by NOVAK uses these
measurement results along with a non-linear system model
to predict the behavior for different excitation levels [6].

The measurement of directional transfer functions or
directivities of sensors or specific arrays of sensors has
gained more interest during the last decade [7]. In the field
of spatial or binaural recording and reproduction the need
for a fast measurement procedure for directivities of indi-
vidual persons rises. This can be explained by smaller lo-
calization errors of binaural signals generated by individual
transfer functions [8]. The fast measurement of the trans-
fer characteristics of multiple sound sources e.g. in a wave
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field synthesis application with more than 100 loudspeak-
ers, can also be used to quickly monitor the status of each
loudspeaker. A further application is the measurement of
room impulse responses with certain directivity patterns
using individually driven loudspeaker arrays. For a large
number of sound sources the measurement duration rises
and there is a need for a fast measurement procedure [9].

The parallel measurement e.g. of several loudspeakers,
can be realized with pseudo-random sequences, since they
are mutually orthogonal [10, 11]. These sequences show,
however, disadvantages as the obtained impulse responses
are very sensitive to time variances and non-linearities in
the measurement chain [3].

Sweeps can also be used for multiple parallel excita-
tion if the system can be approximated as an LTI system
but certain deviation are allowed. MAJDAK ET. AL. intro-
duced a novel fast measurement method for weakly non-
linear systems by using exponential sweeps and an op-
timization strategy to overcome interference in the mea-
surement between non-linearities and the system’s impulse
responses [12]. Two different strategies to avoid this in-
terference (overlapping and interleaving) were proposed
and combined using an optimization algorithm yielding
the so called multiple exponential sweep method (MESM).
MESM has been used to speed-up the measurement of
HRTFs for 1550 directions and the whole procedure lasted
for approx. 20 min [18].

In this paper we propose a generalized overlapping strat-
egy which takes further advantage of a better understand-
ing of the temporal structured of the impulse responses
to be measured. The paper starts with a review of the
sweep measurement technique and the original MESM, af-
ter which the proposed method and the mechanisms it is
based on are described. It follows a comparison between
the proposed method and the original MESM. It will be
shown that under certain circumstances the generalized
overlapping strategy of the sweeps yields even faster mea-
surements times than the original MESM with unchanged
accuracy. The paper concludes with two examples where
the proposed method outperforms the original MESM.

1 REVIEW OF THE EXPONENTIAL SWEEP
METHOD

The logarithmic magnitude of the impulse response of
a weakly non-linear system measured with an exponen-
tial sweep is shown schematically in Fig. 1. Mostly one
has interest in the fundamental impulse response located
in the far right in this example. The impulse responses to
the left of the fundamental impulse response are the har-
monic impulse responses. Let τIR be the length of this fun-
damental impulse response, i.e. the time the system needs
to decay into the noise floor. By using a monochromatic
excitation non-linearities are observed as harmonics k. As
for exponential sweeps it can be shown that the output sig-
nal consists of time and phase shifted exponential sweeps.
These have the same sweep parameters as the excitation.
The deconvolved result contains a fundamental impulse re-
sponse and harmonics hharm,k with their length τIR,k. We

time

t2
t3

tk

IRIR,2IR,i

Fig. 1. Impulse response of a weakly nonlinear system obtained
by exponential sweep measurement.

define τIR,1 = τIR. Please note that, according to TORRAS-
ROSELL AND JACOBSEN, nonlinearities also modify the
fundamental impulse response and therefore the applica-
tion of a time window to delete the harmonics does not en-
tirely suppress the effects of nonlinearities in the measure-
ment [13]. Details on sweep signal formulation, deconvo-
lution and harmonics are presented in the appendix.

The time ∆tk between the fundamental impulse response
and the harmonic k is given as

∆tk =
log2(k)

rs
, (1)

where rs is the sweep rate for exponential sweeps that rep-
resents the frequency range of the sweep in octaves nor-
malized to the signal length in seconds.

The length of the harmonic impulse responses has to be
considered as well to avoid interference of the harmonics
with the fundamental impulse response. For high sweep
rates ∆t2 becomes so small that the second harmonic over-
laps with the fundamental impulse response. This leads to
a constraint for the sweep rate by using Eq. (1) and k = 2
as follows

rs ≤
1

τIR,2
, (2)

where τIR,2 can be reasonably considered smaller than τIR
for weakly nonlinear systems. Hence, a minimum length
of the sweep τsw has to be considered. (Compare Eq. 6 in
[12])

The measurement with an exponential sweep requires a
certain time to allow the system to decay after the sweep
has stopped. This time is introduced as a stop margin τst.
Therefore, the measurement duration with this exponential
sweep method with L loudspeakers measured in a sequen-
tial manner can be given as

TES(L) = L · (τsw + τst). (3)

2 REVIEW OF THE MULTIPLE EXPONENTIAL
SWEEP METHOD

2.1 Parallel Measurement
The multiple-exponential sweep method (MESM) pro-

posed by MAJDAK ET AL. is applicable for weakly non-

2 J. Audio Eng. Sco., Vol. x, No. x, 2013 June



PAPERS Optimized MESM

linear systems [12]. This method reduces the measure-
ment duration significantly compared to sequential mea-
surements with the exponential sweep method when the
number of sources or loudspeakers L is high. The sweeps
are played back with a certain waiting time or delay τw be-
tween the sweeps. Hence, sweeps of several loudspeakers
might run in (semi-) parallel manner as they partly overlap.
In the ideal case without any non-linearities the measure-
ment duration of L parallel exponential sweep (PES) mea-
surements with a sweep of length τsw and a stop margin τst
is given by1

TPES(L) = (L− 1)τw + τsw + τst. (4)

Please note that a different notation than in the original pa-
per from MAJDAK ET AL. is used for improved readability
of the proposed method.

Comparing the duration of the sequential measurement
given by Eq. (3) with the duration of the overlapping
method given by Eq. (4) results in

TPES(L)
TES(L)

=
(L− 1)τw + τsw + τst

L(τsw + τst)
. (5)

The theoretically achievable reduction of measurement
time for an infinitely large number of loudspeakers can be
expressed as

lim
L→∞

TPES(L)
TES(L)

=
τw

τsw + τst
. (6)

Usually the length of the excitation signals lies in the
range of 0.2s for very short and 2s for moderately long
sweeps. The parallel measurement speeds up the measure-
ment especially for a large number of sound sources L, long
sweeps and short delays between the sweeps. Hence, the
minimization of this delay is of interest. A minimum time
has to be waited for corresponding to the decay of the sys-
tem to be measured according to

τw ≥ τIR. (7)

This parallel measurement method can yield impulse re-
sponses that have the same quality in terms of signal to
noise ratio as separately measured impulse responses for
LTI systems.

2.2 Overlapping
MAJDAK ET AL. introduced two different strategies to

enhance this method’s applicability to weakly non-linear
systems [12]. One method is called overlapping (OL),
where the harmonic impulse responses appear between the
impulse responses of interest as shown in Fig. 2. As a draw-
back of the occurrence of harmonic impulse responses the
delay τw,OL has to be increased compared to Eq. (7) to
not interfere with the impulse response of interest. Fur-
thermore, the sweep rate can be increased to shorten the

1This is the same formulation as later used for the overlap-
ping technique but should be seen as a general formulation at this
point. Instead of the exact time delay, when L is very large, a
mean delay can be used instead to approximate the measurement
duration of methods with mixed delays.

delay between fundamental and harmonics (also reducing
the obtained SNR). The maximum order of harmonics kmax
present in the measurement has to be finite and preferably
small to allow a small τw,OL. The illustrative examples in
this paper use kmax = 4.

time

......

Fig. 2. Excitation strategy overlapping with high sweep rate.

The time delay τw has to fulfill

τw,OL ≥ ∆tkmax + τIR =
log2(kmax)

rs
+ τIR (8)

to avoid interference, where rs still has to fulfill Eq. (2).
This overlapping method can directly be used consecu-
tively for an arbitrary number of loudspeakers L. Hence,
the measurement duration can directly be given according
to Eq. (4) but with τw = τw,OL as described in Eq. (8).

2.3 Interleaving
The other strategy previously proposed is called inter-

leaving (IL) [12], where η impulse responses of interest
are grouped together to fit as many fundamental impulse
responses in the time span between the first fundamental
impulse response and its corresponding harmonic k = 2.
This is illustrated in Fig. 3 for kmax = 4 and η = 4. There-
fore the constraint from Eq. (2) has to be narrowed to

∆t2 ≥ τIR,2 + (η − 1)τw,IL (9)

with τw,IL the new time delay between the sweeps for this
interleaving method that just has to fulfill Eq. (8).

The measurement duration with this method for a lim-
ited number of systems η is given as TIL(η) = TPES(η)
according to Eq. (4) by using τw,IL.

time

Fig. 3. Excitation strategy interleaving with low sweep rate and
η = 4.

2.4 MESM
A combination of both strategies with two different time

delays τw,IL and τw,OL is called the multiple exponential
sweep method. It uses the overlapping method of inner
multiple sweeps generated by the interleaving method. An
illustration with η = 2 is shown in Fig. 4. An optimum

J. Audio Eng. Sco., Vol. x, No. x, 2013 June 3



DIETRICH ET AL. PAPERS

time

......

Fig. 4. Impulse response measured with the MESM (η = 2).

solution can be found by either using an optimization al-
gorithm or a closed formulation. This method can also be
used consecutively without additional time delays as was
the case for the overlapping method.

WEINZIERL ET AL. proposed a generalization of the
multiple sweep method by allowing deviating spectral
shapes and individually designed instanteneous frequency
over time functions [14]. Magnitude shaping of the sweeps
to compensate for loudspeaker frequency responses can be
applied to the MESM without loss of generality. The mod-
ification of the sweeps’ group delay results in a blur of the
harmonic impulse responses in time. A trade-off between
the spectral shape of the SNR and an increased length of
the harmonics is used to find an optimum solution. How-
ever, the authors state that, even though the original MESM
mostly outperforms their proposed method for short decay
times tIR < 0.1s, their method can become beneficial for
tIR > 2s

The signal to noise ratio and the temporal and spectral
structure of the results obtained by MESM and sequential
measurements remain the same if the following require-
ments are fulfilled:

1. The system has to be weakly nonlinear only, i.e. the
number of harmonic impulse responses has to be small;

2. In case non-linearities are observed, the level has to be
kept constant between the actual measurement and a
possible calibration measurement. Note that this con-
straint has not been stated in the original paper by MAJ-
DAK ET AL.;

3. The length of the impulse response should be smaller
than the smallest delay τw between two subsequent
sweeps;

4. Once the weakly non-linear loudspeakers play back the
MESM signal no further weak non-linearities are al-
lowed, i.e., the microphones and preamplifiers have to
be driven in a linear range only.

To obtain the minimum measurement duration

τw,IL = τIR (10)

is chosen according to Eq. (8). The maximum value η for
weakly non-linear systems (τIR ≥ τIR,2) for a given sweep
rate can be calculated as2

η =

⌊
τIR − τIR,2 + 1/rs

τIR

⌋
. (11)

2Please note that this equation deviates from Eq. 15 in [12] as
already published in [14].

The parameters required for the optimization of the
MESM only depend on the length of the impulse response
of the fundamental and first appearing harmonic (k = 2)
and the maximum number of harmonics observed kmax. If L
tends to infinity, a mean delay τw,MESM between the sweeps
can be given as

τw,MESM =
(η − 1) · τw,IL + τw,OL

η
. (12)

The measurement duration could then be approximated by
Eq. (4) for high values of L with this delay. However, for
the examples presented in the following section with lim-
ited L, the measurements durations for the MESM are cal-
culated according to Eq. 13 in the original MESM paper by
MAJDAK ET AL..

The theoretical minimum delay τw,MESM can then be
found for the maximum sweep rate rs,max for each η ful-
filling the constraint in Eq. (11)

rs,max (η) =
1

τIR (η − 1) + τIR,2
. (13)

By inserting Eq. (13) into Eq. (12) the locally minimum
delays for η can be expressed as

τw,MESM,η = τIR+ log2 (kmax) ·
τIR(η−1)+τIR,2

η
. (14)

The minimum delay is always found for weakly nonlinear
systems with τIR,2 < τIR for η = 1 as

τw,MESM,min = τIR + log2 (kmax) · τIR,2. (15)

3 OPTIMIZED MESM

The proposed optimization of the MESM

r takes advantage of the temporal structure of the impulse
response;r uses a different placement strategy for the harmonic im-
pulse responses than interleaving or overlapping by plac-
ing the single harmonics between arbitrary fundamen-
tals;r considers the amplitude of all significant harmonic im-
pulse responses along with their SNR and with that a
reduced length for each harmonics order.

This method uses just one time constant τw between the
sweeps. Hence, the measurement duration can directly be
expressed according to Eq. (4). The sweep parameters are
chosen differently as explained next.

3.1 Temporal Structure of Impulse Response
The impulse response (IR) of an acoustic system can be

reasonably assumed to be causal and have an energetically
exponential decay of arbitrary kind. As for measurements
of directional transfer functions of the devices under test
(DUTs) with loudspeakers as sound sources, the obtained
impulse responses consist of a direct sound path followed
by reflections due to objects or e.g. room boundaries. The
overall length of these impulse responses is described by
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Fig. 5. Temporal structure of an impulse response measured with
an exponential sweep.

τIR as introduced above. Even in anechoic environments
such reflections might still occur caused by either a hard
floor or necessary objects in the room, e.g. lamps, carri-
ers, doors, pedestals. Hence, the impulse response can be
described as shown in Fig. 5.

The direct sound contains the only important spectral
and directional information if the reflections are not caused
by the object itself and if the reflections arrive after the di-
rect sound has decayed sufficiently. This important part of
the impulse response with the length τDUT has to be pro-
tected against reflections and also against harmonic im-
pulse responses that might overlay during a measurement
with multiple simultaneous sweeps. Hence, an avoid zone
around this impulse response of the DUT is introduced
with an optional safety time τsp to the left and to the right
leading to the ratio:

α =
τDUT + 2τsp

τIR
≤ 1 +

2τsp

τIR
. (16)

This ratio describes the percentage of the length of the im-
pulse response that can be considered as useful. If the de-
sired information is spread over the entire length of the im-
pulse response and no additional safety time is required
this approach is not beneficial (α = 1). Values smaller than
1 are an indicator that this approach helps to decrease the
measurement duration.

In the MESM the harmonic impulse responses were
placed between the fundamental impulse responses of in-
terest. Since the reflection do not carry valuable informa-
tion these areas in the impulse response can be used to
place the harmonic impulse responses. Hence, harmonic
impulse responses can also be placed anywhere inside the
time τIR except for the introduced avoid zone.

time

...

Fig. 6. Placement strategy of the optimized MESM.

The overlapping method in general and hence also the
MESM can directly benefit from this adapted overlapping
method (AOL) by adapting Eq. (8) to

τw,AOL =
log2(kmax)

rs
+ τDUT + τsp. (17)

The MESM using this approach is called adapted MESM
in the following. Eq. (10) and Eq. (11) remain unchanged.
Thus, the measurement duration of the adapted MESM is
always smaller than the original MESM for α < 1.

3.2 Placement Strategies for Harmonic Impulse
Responses

The harmonic impulse responses caused by a particular
system do not need to gather in a group as in the case for
interleaving and overlapping method. The only claim for
the harmonic impulse responses is to not fall into the avoid
zones as illustrated in Fig. 6.

From the linear case it is already known that the time
delay between the sweeps has to fulfill τw ≥ τIR but it can
directly by formulated a second constraint allowing a min-
imum space between two avoid zones. The combination of
both constraints is given by

τw ≥ max
(
τDUT + 2 · τsp + max(τIR,k),τIR

)
(18)

narrowing the search range. The start of each harmonic k
has to fall after the end of an avoid zone,

(−∆tk mod τw) ≥ τDUT + τsp. (19)

and for the end to appear before the next avoid zone starts,

(−∆tk mod τw) + τIR,k ≤ τw − τsp (20)

leading to a combined constraint by using Eq. (1)

τDUT + τsp ≤ −
log2(k)

rs
mod τw ≤ τw − τsp − τIR,k. (21)

Two parameters are to be found to fulfill the constraint in
Eq. (21) for the avoid zone: τw and rs. It should be pointed
out that a change in rs will alter the obtained overall SNR.

3.3 Amplitude and Length of Harmonics
Systems considered in this work are weakly nonlinear

systems that can be reasonably quantified by claiming a
value for total harmonic distortion below 10% for all fre-
quencies. This results in an attenuation of all harmonics of
at least 20dB. Harmonic impulse responses obtained with
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the exponential sweep method show the same exponen-
tial decay rates as the fundamental impulse response. This
leads to lengths τIR,k of the harmonics always shorter than
the length of the fundamental impulse response to be con-
sidered for the calculation of the optimum parameters. This
can be explained by the fact that, when the decay rate of
the harmonics remains unchanged, the harmonic impulse
responses with lower energy disappear more and more into
the noise floor. The maximum order kmax and the length
of each harmonic impulse response can be obtained from
a calibration measurement using subsequent single sweep
measurements.

The values for τIR,k depend on the signal to noise ratio.
It has to be pointed out that once an SNR is chosen for the
calculation of these values this SNR cannot be exceeded
in the ongoing measurements even with higher amplitudes
or averaging. The influences of these parts below the noise
floor of the harmonic impulse responses on the fundamen-
tal impulse response are still correlated in contrast to the
noise itself. Harmonics that do not show a value τIR,k > 0
can be neglected.

There exist two methods in obtaining τIR,k. The first
method is straightforward and measures these times along
with the amplitude of the harmonic impulse responses in
time domain with the excitation level used for the ongoing
measurements. As a drawback, it cannot be guaranteed that
the harmonics are kept below a certain limit for all frequen-
cies as the time domain just gives an average attenuation.

The second method just uses the length τIR of the fun-
damental and the minimum spectral attenuation of the har-
monics. This attenuation can be found in frequency domain
as the minimum difference ak in dB between the spectrum
of an harmonic k compared to the spectrum of the funda-
mental. [3, 5].

By assuming the same decay rate of the harmonics and
the fundamental the formulation holds

τIR,k =
SNR− ak

SNR
τIR (22)

with the peak SNR in dB in time domain as a worst case
approximation. This approach uses a nonlinear acoustic
model based on [17] and separates the influence of the non-
linearities caused by the loudspeaker (ak) and the decay of
the room (τIR).

For the MESM only τIR,2 was required. With increas-
ing order of harmonics the amplitude of the harmonics are
expected to decrease leading to even shorter τIR,k. The pro-
posed placement strategy can benefit from this behavior.
The influence is studied in simple manner only by using
just a single value for ak and hence The influence is stud-
ied in a simple manner only by using just a single value for
ak and hence the same lengths for the harmonics τIR,k with
k ≥ 2. However, the lengths of the harmonics might still
be determined by analyzing a calibration measurement in
time domain.

3.4 Optimization of the Parameters
To the best knowledge of the authors there is no analytic

solution to find the optimum values for τw and rs to fulfill
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Fig. 7. Valid combinations to fulfill the constraints for the
adapted overlapping method for kmax = 4, α = 1, τIR,k = τIR
(white: interference of harmonics with fundamentals, gray: no in-
terference, black: minimum delay between sweeps).

Eq. (18) and Eq. (21) for arbitrary values of α , kmax and
τIR,k. Therefore an exhaustive search method is applied.
The minimum τw found also gives the minimum measure-
ment duration for the case when L→ ∞.

It has to be pointed out that the combination of a mini-
mum τw and a very low rs does not lead to the interleaving
method with η = L since the constraint in Eq. (21) is ful-
filled for an infinite number of sound sources and only a
single time delay is used in the proposed method.

The two dimensional search space (rs,τw) can be trans-
formed to a normalized search space (rs · τIR,τw / τIR) that
becomes independent on the length of the impulse response
τIR. General constraints for the search space are given by
Eq. (2) and Eq. (7).

Valid combinations are shown in Fig. 7 for an exam-
ple with kmax = 5, α = 1 and no decrease of the harmon-
ics: τIR,k = τIR. The minimum time delay possible between
the sweeps is of interest. Valid combinations can always
be found for high sweep rates and long delays since the
method is equivalent to the overlapping method in this area
according to Eq. (8). It can be stated that this placement
scheme results in time delays equal to or shorter than the
overlapping method. Towards lower sweep rates the range
of valid delays resulting in valid solutions become smaller.
As small deviations in the actual sweep rate of the exci-
tation signal from this optimum value directly results into
a violation of the avoid zone constraint, the use of these
small sweep rates should be avoided. Furthermore, the de-
lay will be likely choosen as an integer number of samples
and this deviation might as well lead to a violation of the
avoid zone constraint.

Due to a strong fluctuation of the minimum delay over
the sweep rate observed in Fig. 7, it becomes evident that
the sweep rate should not be fixed prior to the search. A
range for the sweep rate might be set in advance and the
sweep rate with the lowest delay possible can be chosen
instead. This leads directly to a small change of the SNR
that can be neglected in most cases.
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4 Comparison with MESM

The influence of the three different optimizations in-
troduced above is first discussed for the different place-
ment strategy only and then separately for the remaining
optimizations in combination with the placement strategy.
Please note that the order of appearance of the optimization
contributions deviates from that in Section 3.

4.1 Placement Strategy
The MESM does not originally consider the temporal

structure of the impulse response in a way that it distin-
guishes between relavant and irrelevant parts of the im-
pulse response. Hence, the measurement duration with the
proposed method without this consideration is compared to
the original MESM by setting τIR = τDUT. The maximum
number of harmonics is chosen to be kmax = 5 and τIR,k =
τIR which is a worst case scenario for typical loudspeak-
ers used for this kind of measurements. With decreasing
sweep rate the curve of the MESM shows jumps. These di-
rectly correspond to an increase of η . For high normalized
sweep rates (above 1/2) the interleaving method uses η = 1
and the MESM is therefore equivalent to the overlapping
method. As can be seen in Fig. 8, both methods always re-
sult in a minimum normalized delay shorter or equal to the
delay obtained with just the overlapping method presented
in Fig. 7. The proposed method shows slightly lower values
for some low normalized sweep rates only. It can be con-
cluded that the adapted overlapping method and therefore
the proposed placement strategy alone does not directly al-
low much faster measurement durations and is only bene-
ficial in a very narrow range of sweep rates.

4.2 Temporal Structure with Placement Strategy
The influence of the parameter α discribing the ratio of

the relevant part of the impulse response to its entire length
is studied in Fig. 9. The original and the adapted formula-
tion using Eq. (17) for the MESM is used to plot Eq. (12).
As can be seen, with decreasing percentage of the length
of the important part of the impulse response the proposed
method outperforms even the adapted MESM for nearly all
normalized low sweep rates. It can be stated that the place-
ment strategy is only advantagegous for low values of α

and low sweep rates where the placement of the harmonics
reaches over the time span of various impulse responses.
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Fig. 9. Comparison of minimum normalized delay in MESM and
proposed method for different α (ratio of relevant part of DUT to
entire impulse response length).

4.3 Lengths of Harmonics with Proposed
Placement Strategy

The influence of the lengths of the harmonics is studied
along with the placement strategy in Fig. 10. This reduc-
tion in length is calculated using the attenuation ak which
is chosen to be 20dB and 40dB for every k. As a reference
curve the delays for the MESM without adaptation and
without using the reduced values labeled reference MESM
for τIR,2 are introduced. The values for the original MESM
using this reduction only differ in the vicinity of the jumps.
This can be explained by the fact that η can already be
choosen a step higher for these sweep rates due to a re-
duced τIR,2. Hence, the possible minimum delays for the
adapted MESM are smaller in these regions than for the
original MESM. The proposed method yields shorter de-
lays for low sweep rates only and becomes advantageous
with shorter lengths of the harmonics.

4.4 Combination with Realistic Values
The interaction of the proposed placement strategy with

both temporal structure and the lengths of the harmonics is
studied in Fig. 11. Realistic values have been choosen for
α and ak. These values are also used in one of the following
application examples. The minimum delays for the MESM
without taking advantage of the decreased length of the
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which does not use a reduced length for the harmonics.
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Fig. 11. Comparision of delay for proposed method with realistic
values for α and ak and the reference and adapted MESM.

harmonics and without the adaptation introduced before
are again label as reference MESM. The original MESM
consideres the reduced length for the harmonics only. The
adapted MESM consideres both effects. Obviously, the
adapted MESM always outperforms the reference MESM.
The proposed method outperforms the adapted MESM for
all normalized sweep rates below approx. 0.83. Some nor-
malized delays are very close or even equal to the theoreti-
cal minimum of 1.

5 APPLICATION

Two different examples for application of the parallel
measurement method along with the speed-up achieved are
presented in this section. A summary of the calculated val-
ues is given in Table 5. Details on the implementation and
the source code are given in the appendix A.4

Table 1. Application Examples of Parallel
Measurement Methods

Directivity WFS

L 40 192

τIR 40ms 1s

τDUT 4ms 50ms

τsp 1ms 1ms

τst 40ms 1s

α 0.15 0.05

Separate Measurement 55.209s 1001.1s

(sweep duration) 1.340s 4.2s

MESM 5.934s 445.7s

Adapted MESM 5.682s 264.2s

(sweep duration) 1.367s 4.2s

Proposed method 3.256s 226.6s

(sweep duration) 1.340s 23.4s

5.1 Measurement of Directivity
As a first application the measurement of a directional

microphone with a prominent radiation pattern—at least at
higher frequencies—is chosen, similar to the example in
[12]. This microphone is surrounded by L = 40 broadband
loudspeakers mounted into a measurement arc as described
in [15]. The impulse response of the loudspeaker and
the microphone is short with an approximate duration of
τDUT = 4ms [16]. On the other hand, the impulse response
of the hemi-anechoic chamber of the institute used for the
measurements shows reflections from the floor, supports,
mounts and doors in the order of τIR = 40ms. The avoid
zone was enlarged by τsp = 1ms. Hence, it follows α =
0.15. The stop margin was safely choosen as τst = τIR. Suf-
ficient SNR could be achieved in a test measurement with
τsw = 1.5s yielding more than 80dB peak SNR in the im-
pulse response. The frequency range of interest goes from
100Hz to 18kHz. This corresponds to a sweep rate rs = 5
or a normalized sweep rate rsτIR = 0.2 (See Fig. 11 for
details on the parameters). The maximum harmonic or-
der was kmax = 5 and ak based on a distortion measure-
ment with exponential sweeps with the same level as in the
final measurements: a2 = 35dB, a3 = 45dB, a4 = 40dB
and a5 = 40dB.

According to Eq. (11) η = 5 is obtained for rs = 5. The
highest sweep rate to fulfill Eq. (11) for η = 5 can be
found as rs,max = 5.48 and the sweep duration follows as
1.3673s. For this sweep rate the mean delay τs has a lo-
cal minimum and along with the higher sweep rate this
yields the fastest measurement in this region. The change in
SNR is calculated as −1.5dB. As interleaving delay con-
stant the minimum τIR is used. The remaining parameter
for the MESM as used in the original paper—the addi-
tional time required for each interleaving set, see [12] for
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more details—has been calculated as τ ′k = 0.4238s. The
measurement with the original MESM takes 5.934s. The
optimum values for the sweep rate can also be observed in
Fig. 11 for the normalized sweep rate 0.219 for the MESM
curve.

The adapted MESM uses the same MESM parameters
except for τ ′k = 0.3878s. This corresponds to curve label
adapted MESM in Fig. 11. The measurement duration can
be reduced to 5.682s.

The best combination of sweep rate and delay for the
proposed method was found with the optimization algo-
rithm in the vicinity of rs = 5 as rsw,opt = 5.59 (rsw,opt ·
τIR = 0.2236) and τw,opt = 48.095ms. Without consider-
ing shorter lengths for the harmonics (ak = 0dB) the
optimum solution could be found as rsw,opt = 5.26 and
τw,opt = 65.057ms. This solution results in a longer du-
ration as the delay is longer and the sweep length is
longer due to a lower sweep rate. Hence, the first re-
sult is used. The new sweep has a length of 1.34s and
the theoretical change in SNR is calculated as ∆SNR =
10log10 (rs/rsw,opt) = −0.48dB. For the given measurement
setup with L = 40 loudspeakers the measurement duration
was reduced from 55.209s for the separate measurement to
3.256s for the measurement with the proposed method.

The comparison of the results in frequency domain ob-
tained with the proposed method and by separate measure-
ment reveals maximum deviations of ±0.1dB over the en-
tire frequency range of interest. Deviations in the same or-
der of magnitude are also observed when comparing re-
sults obtained from distinct measurements using the same
method. Hence, the proposed method—in the same man-
ner as the MESM—does not introduce noticeable errors if
the requirements introduced above are met.

The measurement duration can therefore be reduced to
5.9% with the proposed method compared to separate
measurements. The theoretical limit for the reduction for
the proposed method is 3.5% according to Eq. (6). This
could only be achieved by increasing the number of loud-
speakers for parallel excitation. The theoretical limit for the
adapted MESM for the given configuration is 8.5%.

5.2 Condition Monitoring of Loudspeaker Array
As a second example, condition monitoring of an in-

stalled large loudspeaker array, e.g. for wave field syn-
thesis in a cinema, with L = 192 loudspeakers is chosen.
The purpose of such a measurement is to verify the correct
functioning of the different drivers in each loudspeaker.
This could be achieved by e.g. comparing the obtained
frequency response with a reference curve. Hence, the di-
rect sound component of the room impulse response car-
ries all relevant information. Along with an appropriate mi-
crophone array the position of the loudspeakers might be
monitored as well by using the time of arrival in the direct
sound. The room impulse response decays into the noise
floor after τIR = 1s and the stop margin is chosen safely as
τst = 1s. The maximum distance from the loudspeakers to
the microphone is 12m. The maximum length of the loud-
speakers’ impulse response is assumed as less than 10ms.

The part of the direct sound in the impulse response car-
rying the information of the DUT is generously approxi-
mated by τDUT = 50ms and thus α = 0.05 (τsp = 0).

The same assumptions for non-linearities and the fre-
quency range are made as in the previous example. This
results in τIR,2 = 0.56 and therefore rs,max = 1.778 accord-
ing to Eq. (2). For the separate measurements the short-
est overall measurement duration is achieved by using the
highest sweep rate possible as the SNR is not that critical.
The length of the sweep is calculated as 4.2s and the mea-
surement for all loudspeakers takes 1001.1s.

The optimum MESM parameters are found with a
sweep rate rs = 1.78, η = 1, a sweep length of 4.2s, τ ′k =
1.3061s. Hence, the measurement duration is 445.7s. The
measurement duration for the adapted MESM is 264.2s
with the same MESM parameters except for τ ′k = 0.356s.

The optimum solution for the proposed method is found
with rs = 0.32 and τw = 1.0583s. Hence, the theoretical
minimum delay of the linear case is almost achieved with
the proposed method. The overall measurement duration
reduces to 226.6s therefore to 22.6% of the time required
for the sequential measurement procedure. This value is al-
ready very close to the theoretical limit of 20.3% accord-
ing to Eq. (6) with the short sweep length. The theoret-
ical limit for the adapted MESM is 26.0%. It has to be
pointed out that the focus does not lie on the SNR in this
example but only on the fast measurement without artifacts
by harmonic impulse responses. Hence, different optimum
sweep lengths are used for the different methods. However,
the proposed method delivers the fastest measurements al-
though it uses the longer sweeps and hence yields results
with higher SNR than the other methods.

6 CONCLUSION AND PERSPECTIVES

An optimized placement strategy for the harmonic im-
pulse responses for the multiple exponential sweep method
has been proposed. The placement strategy of the origi-
nal method using two different delay constants between the
sweeps can therefore be avoided. The proposed method can
yield shorter delay constants improving the speed of the
measurement. The proposed method can outperform the
previous method by further consideration of the structure
of the measured impulse response. Under certain condi-
tions, especially when only a small percentage of the mea-
sured impulse response is of interest, the proposed method
yields delays only slightly higher than that obtained in the
ideal linear case. It has been shown that the formerly in-
troduced overlapping method is a special case of the pro-
posed method, whereas the proposed overlapping method
yields the same or even shorter delays. Theoretical limi-
tations for the delay and sweep rate have been introduced
in a graphical manner using a normalized two dimensional
search space. The used of the actual (smaller) length of the
harmonic impulse responses instead of the lenght of the
fundamental impulse response in the parameter optimiza-
tion procedure has been proven beneficial.

The proposed method could also be used in combina-
tion with the original interleaving method. The mean de-

J. Audio Eng. Sco., Vol. x, No. x, 2013 June 9



DIETRICH ET AL. PAPERS

lay can be even smaller than the original MESM, but with
the drawback of again using two different delays making
the optimization process and measurement post-processing
more complex. However, the possible speed-up is assumed
to be negligible as the delay for the proposed method is
sometimes already close to the theoretical minimum.
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APPENDIX
A.1 Formulation of Sweep

The following formulation is based on [3, 17, 19]. A
sweep signal is generally defined in time domain by

s(t) = sin(φsw(t) + φ0) (A.1)

with its time varying phase component φsw(t) and the start-
ing phase φ0. Synonyms used in literature are: chirp or
swept-sine. It is convenient to choose the starting phase
φ0 = 0 as this results in a smooth start of the signal with-
out a jump. The instantaneous frequency finst(t) over time
is defined as [17]

finst(t) =
1

2π

dφsw(t)
dt

. (A.2)

Commonly this instantaneous frequency is chosen as
either a linear or an exponential function over time.
An exponential—or sometimes called logarithmic—sweep
starts at its lowest frequency f1 and increases the frequency
until its highest frequency f2 in an exponential manner over
time defined by the sweep rate:

rs =
log2 ( f2/f1)

τsw
octaves/s (A.3)

with the time τsw between those frequencies. As the fol-
lowing formulation uses the basis e instead of the basis 2
the rising time constant Ls is introduced as

Ls =
log2(e)

rs
=

τsw

ln
(

f2
f1

) . (A.4)

The instantaneous frequency is therefore given as

finst(t) = f1 · et/Ls and t ∈ [0,T ] (A.5)
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and is zero otherwise. The phase of the sweep can now be
obtained by integration of Eq. (A.2) as

φsw(t) = 2π

t∫
0

finst(τ)dτ = 2π f1Ls

(
et/Ls − 1

)
. (A.6)

A.2 Inverse Filter—Deconvolution
In order to obtain the impulse response h(t) of an LTI

system the system output g(t) has to be deconvolved with
the input signal s(t). Despite the time domain methods, this
deconvolution can be generally realized efficiently in fre-
quency domain by transforming input and output signal
with the Fourier transform (S( f ) and G( f ), respectively)
and processing a spectral division to obtain the complex
transfer function of the system

H( f ) =
G( f )
S( f )

and S( f ) 6= 0. (A.7)

Problems arise for frequencies where the values of S( f )
become very small. As the output of the system is always
superposed by measurement noise this noise will be am-
plified by the division leading to errors in the impulse re-
sponse. This becomes evident as the exponential sweep
only provides significant amplitude in the frequency range
between f1 and f2.

In the digital domain the Discrete Fourier Transform is
used instead. This directly leads to a cyclic convolution or
deconvolution of multiplication or division is used in fre-
quency domain. Generally, this periodicity might become
problematic when the system shows non-linear behavior as
harmonic impulse responses might overlap with the funda-
mental impulse response. Zero padding the discrete time
signals s and g in the end and doubling the length of these
signal prior to the devision can therefore solve this prob-
lem. This approximates linear deconvolution.

Especially for sweeps the inverse sweep can also be cal-
culated directly in time domain as e.g. formulated in [17].
This inverse sweep is then convolved with g(t) and no fur-
ther regularization to account for the band limiation is re-
quired and it already has the same frequency limits as the
original sweep.

A.2.1 Zero-phase Regularization
To overcome this problem FARINA [4] introduced a reg-

ularization method already used by KIRKEBY and many
others in different contexts. The regularized inverse reads
as follows

Sinv,reg( f ) =
S∗( f )

S∗( f )S( f ) + ε( f )
(A.8)

where S∗( f ) denotes the complex conjugate of S( f ) and
ε( f ) is a real-valued and frequency dependent regulariza-
tion parameter. The regularized transfer function follows
accordingly as

Hreg( f ) =
G( f )
S( f )

1
1 + ε( f )/|S( f )|2

=
G( f )
S( f )

· Areg( f ), (A.9)

where Areg( f ) describes the influence of the regularization
as a filter. Since the input signal is band limited it is rea-
sonable to increase the regularization parameter below f1
and above f2. The resulting transfer function is also band
limited and is less influenced by measurement noise. The
phase of Areg( f ) is zero for all frequencies but this filter
is band limited. Hence, the equivalent impulse response of
Areg( f ) is symmetric regarding the time axis, i.e. the im-
pulse response has an non-causal part dependent on the
band limiting frequencies f1 and f2.

Please note that the use of the inverse sweep along with
a convolution also introduces a frequency band limita-
tion. Depending on the particular implementation of time-
discrete sweeps with finite lengths the frequency response
of the convolution of the sweep with the inverse sweep
might include ripples at the edges of the frequency range
(Gibbs phenomenon). The phase of this frequency response
is zero for all frequencies and hence this ideal impulse
response is always symmetric due to band limitation and
hence a-causal.

A.2.2 Minimum-phase Regularization
To overcome the problem of non-causality, Areg( f ) can

be factorized into a minimum-phase (MP) regularization
filter and a remaining non-causal all-pass (AP) filter [20,
21]:

Areg( f ) = Areg,MP · Areg,AP( f ). (A.10)

By using Areg,MP in the deconvolution process the obtained
fundamental impulse responses are always causal. These
can be further processed by time windows. As a last step
of data post-processing the all-pass component can be ap-
plied to compensate for the phase error in the pass-band
yielding non-causal impulse responses again. This method
has great advantages when the arrival time of an impulse
is known and the time window should be applied directly
at these pre-calculated arrival times. In the context of mul-
tiple excitation signals the measured and deconvolved sig-
nal have to be split into the impulse responses of separate
systems. Non-causal impulse responses are problematic as
the signal can spread to the left on the time axis interfer-
ing with the end of impulse response of the previous sys-
tem. Hence, the split post-processing as described above is
preferably used or at least a time shift accounting for this
portion of the impulse response should be used instead.

A.3 Harmonic Impulse Responses
The output of a non-linear system to a monochromatic

input signal, e.g. a pure tone or sine with a frequency f0,
is a superposition of pure tones with multiples of this fun-
damental frequency fn = n · f0 and n ∈ N [3, 5]. For expo-
nential sweeps the output of a non-linear system shows a
superposition of harmonics of the sweep.

The dependency of the instantaneous frequency of the
harmonics remains exponentially over time. But this slew
rate is now a multiple of the original sweep. MÜLLER ET
AL. [3] and FARINA [5] showed that this results in ”time
shifted” versions of the original sweep that appear as im-
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pulse responses of these harmonics after deconvolution.
Therefore, the time shift ∆tk of the k-th harmonic can be
found by solving:

finst(t + ∆tk) = k · finst. (A.11)

By inserting Eq. (A.2) it reads

f1e
t+∆tk

Ls = k · f1e
t

Ls . (A.12)

Dividing by f1, applying the natural logarithm and resolv-
ing to ∆t the final results is

∆tk = ln(k) · Ls =
ln(k)

rs ln(2)
=

log2(k)
rs

. (A.13)

NOVAK showed that the harmonic impulse responses are
generally not in phase with the fundamental impulse re-
sponse [22, 17]. This can be explained by the fact that only
the instantaneous frequency was used to find the time shift.
As the position of the harmonics strongly depends on the
sweep rate it is necessary to generate sweeps with exact
sweep rates.

A.4 Implementation
All routines used in this manuscript have been imple-

mented in MATLAB using the ITA-Toolbox. The ITA-
Toolbox is open-source and freely available with a BSD
license under www.ita-toolbox.org. This toolbox provides

special objects for audio signals. These objects allow var-
ious plots with automatic and normalized transformation
between time and frequency domain. Functions for vari-
ous signal processing tasks commonly used in acoustic are
available that work directly on these audio objects.

Furthermore, it contains an application for the mea-
surement of acoustic systems using standard audio sound
boards under Windows, Linux and Mac OS. Current sys-
tem and software requirements are listed on the web page.
The measurement application features an object oriented
approach that allows for automatic measurements of im-
pulse responses including deconvolution and level com-
pensation. The signal excitation and deconvolution tech-
niques described in this appendix can all be configured ac-
cordingly with these measurement objects.

Routines for the optimization of the parameters for the
proposed method are included with an additional script that
was used to optimize the parameters for the given config-
urations used in this paper. A special measurement object
for the MESM and the proposed method allowing semi-
parallel excitation with arbitrary time delays between the
channels of the driving loudspeaker is available. It pro-
vides an automatic measurement according to the specified
parameters with subsequent partitioning of the impulse re-
sponses according to the loudspeaker channels and the time
delays used.
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